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Abstract. We propose a diffusion equation for transport on a loopless aggregate. The 
relevant distance variable is the chemical distance and the spatially dependent coefficients 
of the diffusion equation are found in terms of B(I) ,  the number of bonds at chemical 
distance I from the vertex of the tree, and Bs(I), the number of bonds on the skeleton of 
the tree. It is shown that the resulting motion can be modelled in terms of a biased 
one-dimensional random walk with a probability of remaining in place that approaches 1 
as I + w .  This is interpreted as being due to motion along dead ends. An important 
consequence of the model is a simple derivation of the expressions relating the diffusion 
exponent and fracton dimension to the fractal dimension and the intrinsic dimensions of 
the tree and its skeleton. The mean first-passage time to go from the vertex to an arbitrary 
shell is also found. 

The analysis of transport properties on fractal aggregates has attracted considerable 
recent attention (Alexander and Orbach 1982, Ben-Avraham and Havlin 1982, Gefen 
et al 1983, Mandelbrot 1982, Rammal and Toulouse 1983, Pandey and Stauffer 1983). 
In earlier papers we have considered the problem of establishing the relations that 
must exist between exponents that characterise the diffusive motion (Havlin et a1 1984, 
1985b). The argument presented in these earlier papers was based on the Einstein 
relationship which allows one to express the chemical diffusion exponent d &  the 
spatial diffusion exponent d,, and the fracton dimension d, in terms of the fractal 
dimension, df, the intrinsic dimension of the tree, dl, and that of the skeleton, ds. These 
relations were shown to be d!,, = 2+ d/ - d7, d ,  = df/[d1(2+ dl - d ; ) ]  and d = 
2dl/(2+dl-ds).  When the trees are finitely ramified ds=  1 .  This special case was 
applied to the analysis of lattice animals (Havlin et a1 1984) and diffusion limited 
aggregation (Havlin et a1 1984, Witten and Kantor 1984). In this letter we suggest an 
alternative approach for the study of diffusion on loopless aggregates based on the 
properties of an appropriately constructed diffusion equation. The philosophy of this 
approach is somewhat similar to that found in a recent investigation by O'Shaughnessy 
and Procaccia (1985). In contrast to their work, which expresses results in terms of 
geometric distances, we will use the chemical distance I (Havlin and Nossal 1984). A 
heuristic derivation of our suggested equation will be given. 

Let us therefore consider a loopless tree characterised by a vertex or origin, an 
infinite branched skeleton, and finite dead ends that branch from the skeleton. The 
resulting structure, for simplicity, will be assumed initially to be discretised in units 
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of AI. Later we will pass to the continuum limit. The random walk is chosen to be 
unbiased, allowing steps to nearest neighbours only. Thus a random walker at I can 
move in a single step only to I * A l  on the tree with probabilities denoted by p + ( I ) .  
The probability at each node for moving along a particular branch feeding into it is 
assumed to be equal to l / n ,  where n is the number of such branches. If we consider 
the transition probabilities as a function of I then it is evident that the p , ( I )  are not 
necessarily equal, nor do they necessarily sum to one, since the tree is more richly 
branched as 1 increases. It will therefore also be necessary to define a probability for 
pausing at any given step, equal to po( I )  = 1 - p + ( l )  -p-(Z). In order to derive 
expressions for these probabilities we need to define quantities that characterise the 
tree and whose properties are assumed to be known. These will be B ( I ) ,  the number 
of bonds at chemical distance I from the vertex, and B s ( I ) ,  the number of bonds on 
the skeleton at I. The probabilities po( I )  and p*(  I )  are related to these quantities by 

PO( I )  = 1 - p + (  I )  - p - (  I )  = 1 - Bs( I ) /  B (  I )  ( l a )  

P + ( U / P - ( O  = B"I+ l ) / W O .  ( 1 b )  

The first of these relations indicates that the random walker pauses in its progress 
along the skeleton whenever it finds itself on a dead end. The second indicates that 
the relative probabilities of a step in the forward or backwards directions along the 
skeleton depend on the relative number of bonds allowing motion forward and 
backwards. 

Equation ( l ) ,  together with known scaling properties of B ( I )  and B'((1) at large I ,  
allows us to find asymptotic expressions for the transition probabilities. The exponents 
dl and dq characterise the mass of the tree and the skeleton respectively, through the 
relations M (  I )  - I d l  and M s (  I )  - I d ; .  These lead to 

B(I)-dM(I) /dI-  I d l - ' ,  Bs( I )  - dMs(I)/dl  - ( 2 )  
which, together with equation (1) leads to explicit expressions for the transition 
probabilities. These are 

(3) 
where A is a constant related to the proportionality factors in the asymptotic expressions 
for M ( I )  and M s ( I ) ,  and the parameters Q and B are related to dl and d ;  by 

P*(/) = ( A / 2 1 " ) ( 1 *  8 / 2 1 ) >  Po( I )  = 1 - A/ I" 

Q = dl - dq, B = d ; - 1 .  (4) 
Equation (3) implies that as the random walker moves further from the origin it is 
increasingly likely to remain stationary. This is reasonable from the consideration that 
the random walker is increasingly likely to be caught in a dead end as it moves away 
from the origin. The origin of the terms in parentheses in equation (3) is the fact that 
when the skeleton branches, or d7> 1, the random walk is biased in the direction of 
the more richly branched section. 

Our assumption that the random walk moves to nearest neighbours only, allows 
us to write a recursion relation for the state probabilities U,(I) at step n: 

U,+,( 1 )  = p+(  I - A i )  Un( I - A I )  + p - (  I + AI) Un( I +  AI)  +PO( I )  Un( 1 )  ( 5 )  

or equivalently, in terms of the difference operators A d ( / )  =f(I+ 1 )  -f(I), A n g ( n )  = 
g ( n +  l ) - g ( n ) ,  

An Un ( I )  = A? p - (  I -  AI)  Vn ( I  - AI))  + AI[ ( p - (  I - AI)  - p + (  I - AI))  U, ( I - AI)]  ( 6 )  
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where A’= A(A) .  At sufficiently large values of 1 this equation becomes 

This form of the transport equation suggests a passage to the diffusion equation limit 
by  replacing the difference operators by derivatives. Strictly speaking this can only be 
justified for B = 0 but we have found, using numerical solutions of equation ( 6 ) ,  that 
the resulting diffusion equation 

leads to results in good agreement with the solutions of the difference equation. This 
is illustrated by the results shown in figure 1. The results of this model will now be 
discussed. 

The solution to equation (8) that satisfies the initial condition U(1,O) = 6 ( I )  is 
found to be 

in which A = 2 / [ A ( 2 +  a)’]. The expression for U (  1, n) allows us to deduce relations 
between the various exponents. The exponent df, is readily found by calculating the 
mean square displacement U’( I )  from equation (9). Note that since 1 is always positive 
( I )  > 0. We find that the time dependence of crz( I )  is 

a2( 1 )  E ( 1 2 )  - ( I ) 2  = cn2’(2+0) (10) 

where C is a constant. This equation implies that df, = 2 + a = 2 + dl - d; .  Furthermore, 
the behaviour of U for small but fixed l (  I = O(1)) as n + 00 goes as n- (*+a+B)’ (2+a)  
which implies that the fracton dimension is 

d = 2 ( 1 +  a + B ) / ( 2 + a )  = 2 d / / ( d l - d ; + 2 ) .  (11) 

The exponents df, and d are in agreement with those derived using an argument based 
on a calculation of resistance (Havlin e? a1 1984, 1985a, b), lending some confidence 
to the present results. One can observe that the term B representing the asymmetry 
of the structure does not appear in the exponential term in equation (9), but it does 
appear in the n-dependent term multiplying it and affects the fracton dimension in 
equation (11). That it should appear in the latter term is intuitively reasonable, since 
it represents the probability that the random walker is near the origin at step n. We 
have looked a little closer into the circumstances under which the B will appear in 
the exponent. Specifically we looked at the family of transition probabilities 

(12) 

finding that when p 3 1, the parameter B does not appear in the exponent, in contrast 
to p < 1 when it does. This result was found by solving equation (5) numerically. No 
strictly analytic proof of its validity is known at present. 

Our formula for U(I, n) disagrees with that of O’Shaughnessy and Procaccia (1985), 
who derived a diffusion equation in the geometric distance, r, also based on scaling 
arguments. Although the average quantities and the scaling form represented by the 
exponents in equations (lo) and (1 1) have been confirmed numerically (Havlin et a1 

p*( I )  = ( A / 2 1 ” ) (  1 * B / 2 1 P )  



L1046 Letter to the Editor 

a = l  5 

n 

( a + l + b ) l ( a + 2 )  

Figure 1. Results generated by a numerical solution of equation ( 5 )  for (a)  d k ,  ( b )  d for 
different values of the parameters a and E. These results are in agreement with equations 
(10) and (11) .  The different symbols in ( a )  represent different values of E :  E =  -0.5(0), 
B = 0.3(0), B = OS(A), B = 0.8(0) ,  B = 1.0(0), B = 1.5(.). The symbols in ( b )  represent 
different (a, E )  apirs in the ranges O <  a s  1.5, -0.5 c B c  1.5. 

1984, 1985b), we believe that the detailed form of equation (9) is not necessarily 
accurate for loopless aggregates or for other fractals. One might expect to have another 
exponent 8 that characterises the random pausing time distribution caused by sojourns 
on dead ends. Thus, we conjecture that a more general treatment might lead to a 
change in the exponent in (9) to the form e~p[-A(I*+"/n)~]  with 8 < 1. Very recent 
unpublished numerical results for several fractals are consistent with the identification 
8=(dW-l)- ' .  Such an effect has been found recently for diffusion on percolation 
clusters (Havlin et a1 1985a). 
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If the diffusion equation in equation (8) is found in more detail to lead to an 
accurate description of transport on such loopless aggregates, then it is also possible 
to solve first-passage problems for the time to reach a shell at a specified value of the 
chemical distance. For example, if equation (8) is expressed as 

a Ulan  = M U  (13) 

where M is the differential operator involving I ,  then the mean first-passage time to 
reach level L starting from level 1 is given as the solution to 

M + ( n ( I ) ) =  -1 (14) 

where M +  is the adjoint operator to M (Weiss 1967). This equation is to be solved 
subject to the boundary conditions 

It is easy to show, using the combination of equations (8) and (13)-( 19, that ( n ( 0 ) )  - 
La+’ which is the result one expects knowing that ( I )  - n”(“+’).  
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